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The digitalization of manufacturing involves machines equipped with sensors that collect, produce, and 
exchange data machine-to-machine and machine-to-human in real-time. As the data generated within a 
production process can be massive and overwhelming for human users, support is needed to understand 
and explore this data, and drive decisions from it. First, the data has to be monitored and recorded 
using methods that can handle massive datasets. Next, the collected data has to be analyzed (often in 
real-time) to, e.g., (i) identify undetected process correlations, (ii) forecast the product quality, and (iii) 
perform root-cause analysis of failures or problems. The analysis becomes even more valuable when 
the production process is divided into repeating tasks, producing a vast amount of comparable data. 
For instance, in automotive durability tests, engineers investigate an engine’s condition using multiple 
sensors, recording data from repeating test cycles. Tests can span dozens or hundreds of cycles, and 
thousands of runtime hours, making it difficult for engineers to collect and monitor each iteration’s data 
to detect interesting data, such as anomalies. We propose an interactive visual analytics approach that 
displays the iterations of durability tests as a collection of color-encoded cycle glyphs to tackle this 
issue. With our approach, domain users including test engineers can readily monitor the test, detect 
potential anomalies, and intuitively analyze, report and document the detected anomalies. This research is 
conducted in close collaboration with our partner from the automotive sector and shows the effectiveness 
and efficiency of a prototype with a pair analytics evaluation study. We open up directions for future 
work, including a visual interactive labeling concept for anomaly classification.

© 2021 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/).
1. Introduction

This work is an extension of work originally presented by 
Suschnigg et al. [1] at the BigVis 2020 Workshop held in conjunc-
tion with the 23rd Intl. Conference on Extending Database Tech-
nology (EDBT 2020) & 23rd Intl. Conference on Database Theory 
(ICDT 2020). To distinguish this research paper from the original 
work we state the extensions as follows: (1) a substantially revised 
title, abstract and introduction, (2) an additional anomaly detector, 
(3) a more detailed evaluation section, (4) a more detailed discus-
sion section with additional results, (5) a more extensive outlook 
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for future work and (6) concept and preliminary results on the on-
going work on visual interactive labeling for anomaly classification.

Digitization changes the way how manufacturing is operated. 
Machines equipped with growing amounts of interconnected sen-
sors can capture more and more details of production and other 
industrial processes [2]. Further, data from industrial processes are 
increasingly exchanged within supply-chains leading to digital sup-
ply chains [3]. As a result, massive amounts of data are available, 
and the ability to use this data becomes a central success fac-
tor for manufacturing companies [4]. Due to the complexity of 
the data sets and the interwoven application contexts, manufac-
turing experts need cognitive decision support [5]. However, for 
human perception, it can be overwhelming to observe and analyze 
large industrial data sets. Another essential requirement of ana-
lyzing industrial data is that extensive professional and domain-
specific knowledge of users is required. Visual analytics research 
 under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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proposes tools supporting domain experts to explore large and 
complex data sets to address those challenges [6]. Big data re-
search states that data science processes are highly iterative and 
exploratory, whereas, for many industrial applications, there is no 
single model or algorithm that can handle all data set varieties and 
changes in data that may occur over time [7]. An ongoing research 
challenge in big data visualization highlights that analytics require 
a combination of visual, interactive, and automated analysis meth-
ods [8]. Using this diversity of methods to provide an effective and 
efficient tool, we propose a glyph-based visual analytics approach 
to explore and analyze anomalies in multivariate cyclic industrial 
time series data. The idea is based on a design study, conducted in 
strong collaboration with an industry partner from the automotive 
sector, focusing on powertrain testbeds. The main driver of the fo-
cus on anomaly detection is the common occurrence of real-world 
problems in automotive condition monitoring.

This paper’s contributions include: (1) Characterization of an 
industrial data set and a design study. (2) An extendable and ver-
satile glyph-based visual analytics approach for anomaly detection 
in multivariate sensor data. The application of techniques enabling 
users to visually identify conspicuous sensor data by a matrix rep-
resentation for drill-down and further comparative analysis. (3) 
Results and discussion of a pair analytics evaluation [9], which has 
been conducted in collaboration with the target user group on the 
given use case data set. (4) Promising directions for future work, 
including preliminary results on a visual interactive labeling con-
cept for anomaly classification.

2. Related work

This section discusses the related work conducted in analyzing 
data using either automated data analysis or visual analytics ap-
proaches. Furthermore, we detail the glyph representation as this 
technique is proven to be an effective manner to represent time 
series.

2.1. Automated data analysis approaches for anomaly detection

One property of many typical industrial applications is the rep-
etition of specific tasks. To give an example, Maier et al. [10]
emphasized reoccurring processes (cycles) for automation and pro-
duction. In theory, data generated within such cycles should be 
highly comparable for anomaly detection. Anomalies are gener-
ally understood to represent patterns in data that do not conform 
to a well-defined normal behavior [11]. The literature provides a 
comprehensive collection of algorithms for the detection of anoma-
lies in multivariate time series data. Anomaly detection also of-
ten refers to the term novelty detection [12] or semi-supervised 
learning [13], whereas for those methods, the definition of nor-
mal or rather reference data is needed. Anomaly detection in time 
series [14] found attention from the industry for several appli-
cations, such as predictive maintenance [15], condition monitor-
ing [16] or decision support systems [17]. This work uses three 
groups of anomaly detection algorithms. The first group covers 
correlation-based approaches, which are applied effectively on in-
dustrial sensor data [16]. This approach’s idea is that changes in 
the bivariate correlation between two sensors can be interpreted as 
an anomaly. The second group are regression-based methods [18]
or reconstruction-based novelty detection methods [12]. This type 
of anomaly detection’s basic idea is to build a regression model 
on reference (normal) data. The model’s estimation errors com-
pared to measured data are rated as anomalies if they exceed a 
predefined threshold. The third group derives from feature-based 
classification [19]. They focus on finding a compact description of 
time series through features and detect outliers in the created fea-
ture space [20].
2

2.2. Visual analytics for industrial application

A survey on visualization and visual analytics applications for 
smart manufacturing has been published by Zhou et al. [21]. It 
reveals the diversity of several studies performed for industrial ap-
plications and the need for visual analytics. A few examples are 
available on how to find anomalies in multivariate time series 
data by visual analytics. An application for finding anomalies in 
the power consumption of buildings has been proposed by Janet-
zko et al. [22]. It suggests a model-based and a similarity-based 
anomaly score and visualizes them in several visualization tech-
niques such as recursive patterns [23], spiral graphs [24], and line 
charts. In the work of Wu et al. [25], anomalies are detected for 
condition monitoring by a model-based approach. The deviation of 
estimated and real values is visualized in a river plot view [26]. As 
an ongoing challenge, the authors outline the analysts’ problem to 
trust and use the algorithms for condition monitoring. Many dif-
ferent algorithms are available for several applications, and finding 
appropriate models and parameters is a challenging task. Xia et 
al. [27] proposed a visual analytics application to support users in 
finding the right model for dimensionality reduction. Another work 
addressing this challenge is presented by the EnsembleLens [28]. It 
is a visual analytics system to help data mining experts to evalu-
ate, compare, and select available anomaly detection algorithms.

2.3. Glyph representation of cyclic time series data

Besides the significant summaries and surveys [29] [30], re-
cently, a systematic review of experimental studies on data glyphs 
has been presented by Fuchs et al. [31]. Glyphs are an appropriate 
choice and can enable a quick visual comparison of data values 
over time [32] to visualize multivariate time series data. Ward 
and Lipchak [33] proposed the visualization of a circular glyph 
for recognition of the evolution of measurement of interest. An-
other glyph-based design for outlier detection in social networks 
has been proposed by Cao et al. [34]. In their work, glyphs vi-
sualize users’ suspicious behavior, based on the z-score of several 
attributes, in a design similar to star glyphs. The anomaly scores 
of entities are visualized by the red color’s intensity in the cyclic 
glyph center. As examples for glyph-based time series visualiza-
tions, a few techniques for glyph designs for comparison purposes 
are evaluated in the work of Fuchs et al. [32].

3. Background on automotive testbeds and use case

Our use case focused on automotive engines in the context of 
the validation and verification phase of the industrial product life 
cycle [35] [36]. After an engine has been developed, its require-
ments are verified and validated in automotive testbed environ-
ments. These requirements can be functional, such as the engine 
power density, speed, and durability, or of legal nature, such as, 
along with others, fuel economy, noise pollution, and exhaust gas 
emissions. For our research, we analyzed data from a durability 
test of an internal combustion engine. The test’s primary goal is 
to ensure the engine’s durability, reliability, and lifetime expecta-
tions. Therefore, durability tests are conducted to let the engine 
undergo sufficiently high mechanical and thermal loads (stresses) 
and a sufficient number of fatigue cycles (e.g., hundreds of hours) 
[37]. During durability tests, a vast amount of data is collected by 
sensors, which are commonly integrated in modern vehicles and 
accessed through the engine control unit (ECU), or sensors that 
have been mounted on the engine and the testbed for testing pur-
poses.

Throughout durability tests, engineers observe the test and are 
responsible for the testee’s performance and condition. For the 
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Fig. 1. Temperature of the critical component over all cycles. For each cycle over the 
whole durability test time the mean temperature has been calculated for temporal 
trend analysis.

condition monitoring task, engineers generally monitor a few fa-
miliar sensors for threshold violations, manually selected and de-
fined by their given domain knowledge or by the customer. How-
ever, for novel engine design, which has been recently developed, 
there is no knowledge on all sensors and their thresholds, and ear-
lier experiences are often not applicable. An essential task in the 
testing of novel engine designs is a derivation analysis with pre-
vious designs. Therefore, our work is motivated by using the time 
series data of all sensors and the information they might contain.

To give a practical example of the challenges engineers face 
during durability tests, in Fig. 1 a line plot describing the problem 
of a use case is shown. After 1, 200 hours of 2, 000 hours dura-
bility test, a fatal error occurred, which increased the temperature 
of a critical part of the engine by up to 8 °C over time. Finally, 
the durability test failed because of this temperature increase of 
a critical component. The failure could not be anticipated for two 
reasons: (1) the anomaly only occurred in a specific context (at 
a specific engine speed) and (2) the number of sensors was too 
large to monitor the whole data set accurately. Consequently, it 
was challenging to define rule-based thresholds or measurements 
of concern, indicating the failure upfront. However, compared to a 
simple rule-based anomaly detection approach, more complex data 
analysis and models that also take the interplay of sensor data 
into account may lead to better analysis results. Domain experts 
assume that it should be possible to anticipate such failures by 
advanced data analysis and visualization techniques. Therefore, to 
understand engineers’ current data analysis workflow, we carried 
out a design study forming the basis for our proposed visual an-
alytics application. More details on the data and the design study 
will be given in the next section.

4. Design study

As the first contribution of this paper, we characterize testbed 
data and studied how engineers fulfill their condition monitor-
ing tasks through data analysis. This section relates to Miksch and 
Aigner’s “design triangle” [38] and is generally based on the design 
study methodology of Sedlmair et al. [39]. For the aspects of the 
tasks of the design triangle, we bridge from goals to tasks with the 
design study analysis report as proposed by Lam et al. [40].

4.1. Data

Input data used in our proposed visual analytics approach for 
anomaly detection is taken from an automotive engine testbed. 
One common task within engine development is to carry out dura-
bility tests. For such a durability test, a test cycle is specified to 
verify the durability of an engine. The test cycle, which is defined 
by given engine speed and engine torque profile over time, is re-
peated in a period of several months until the target operating 
hours are reached. During a durability test, hundreds of sensor 
measurement signals are acquired and stored continuously, while 
3

the engine drives the given profile. In the automotive domain, 
those sensor measured time series are called channels, which we 
adopted throughout our research. Among others, channels mainly 
record several engine speed, engine torque, temperatures, pres-
sures, and exhaust gas measures.

One cycle is stored within one file and can be seen as a N × n-
dimensional matrix, where N is the number of channels and n
the length of the time series. All signals originally are recording 
numerical values in a frequency of 10H z. Note that channels are 
aligned according to the given engine speed profile, and there-
fore, cycles of the same length can be extracted. The target data 
contains records of c = 860 cycles of 2, 000 hours’ durability test, 
in which each cycle has a duration of 140 minutes. Overall, the 
dataset has 860 cycles x 480 channels x 84, 000 numerical values.

4.2. Users

Users of our proposed visual analytics application are de-
velopment engineers with a mechanical engineering background, 
working with powertrains and engines regularly. They have long-
standing experience with engines in testbed environments and as 
front-line analysts, also practically analyzing data to achieve their 
analysis goals (i.e., condition monitoring). Three users collaborated 
in our project systematically by participating in the design study 
and the pair analytics evaluation (see Section 4 and Section 7). In 
general, testbed data is essential for development engineers and 
offers the opportunity to measure indicators regarding functional 
or legal requirements and engine performance. During our research 
work, we collaborated with data scientists who are daily working 
with testbeds and powertrains. They continually provided informal 
feedback from a different view throughout our work.

4.3. Tasks

This design study is based on the domain question if an en-
gine is non-critical during a durability test. For that purpose, we 
define test cycles as the population unit (or entity, or unit of anal-
ysis) [40]. Furthermore, engineers have a high understanding of 
using cycles as a granularity level for their analysis. Due to cycles’ 
repetitive behavior, they are highly comparable, and therefore we 
define engineers’ data analysis goals as multiple population anal-
ysis. Consequently, we identified that engineers were pursuing all 
three multiple population goals defined in the design study anal-
ysis report framework [40] and summarized them in Table 1: (a) 
compare entities (b) explain differences, and (c) evaluate hypothe-
sis. Columns contain analysis goals and the associated input data. 
Analysis steps and outputs are in the rows. Overall, data analysis 
is done by visualizing and comparing time series line plots of sen-
sors, combined with domain knowledge to interpret findings. In 
the following, we further investigate these goals’ characterization 
by their input, output, and analysis steps.

4.3.1. Compare entities
Engineers attempt to detect population differences as their top-

level analysis goal. To achieve that, engineers are observing trends 
of several familiar channels by calculating the mean values of 
channels per cycle and visually exploring changes over cycles in 
a time-ordered line plot (see Fig. 1). In temporal trend charts, up 
to ten time series are compared either in juxta- or superpositioned 
line plots [41]. The output of the compare entities analysis goal is 
to observe a conspicuous temporal trend or anomaly, which is in-
vestigated in the explain differences goal.

4.3.2. Explain differences
Regarding the domain question, the output of the explain dif-

ferences goal can be either that the observation is not relevant for 
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Table 1
Design study analysis report: Goals and tasks for automotive testbed condition monitoring.

(a) Compare entities (b) Explain differences (c) Evaluate hypothesis

Input Testbed cycles, whereas within a daily iteration 
the focus is to compare current cycles with pre-
vious cycles

Whole time series and an observation (i.e., 
anomalous sensor data)

Hypothesis: A conspicuous component caused the 
anomaly

Steps Comparing line plots of well known sensors. Up to 
ten lines and their according scales are visualized 
in many plots at once. Also, temporal trend analy-
sis of aggregated multiple cycles are visualized by 
line plots.

Domain knowledge of testbed engineers enables 
the exploration of specific sensor data line plots 
to retrace occurrences of observations

Domain knowledge of users allows the investiga-
tion of the hypothesis through the data and spe-
cific channel line plots

Output Observation of anomalies and deviations of cur-
rent daily data regarding past data

Identification of the component on the engine, 
which is responsible for the anomaly or time 
frame, when the anomaly happened or started

As a confirmation or rejection of the hypothesis, 
the conspicuous component is in a bad condition, 
or not
the engine condition, or as a hypothesis one specific component of 
the engine is in bad condition. In the next analysis goal, the hy-
pothesis needs to be evaluated.

4.3.3. Evaluate hypothesis
Regarding the domain question, the output of the explain dif-

ferences goal can be either that the observation is not relevant for 
the engine condition, or as a hypothesis one specific component of 
the engine is in bad condition. In the next analysis goal, the hy-
pothesis needs to be evaluated.

Through that characterization of higher-level analysis goals, we 
can derive lower-level task definitions T1–T5 to address them 
in our visual analytics design considerations and automated data 
analysis:

T1 Identify population contrasts. Test cycles are the unit of anal-
ysis, or population, for engineers. As the first task, population 
contrasts or differences are explored. This is achieved by tem-
poral trend analysis of a few familiar channels. The problem 
of dealing with big channel amounts engineers face should be 
considered in the design by taking all channels into account.

T2 Application and visualization of semi-supervised anomaly de-
tection methods. Engineers detect interesting patterns and 
anomalies mainly by visually exploring line plots of chan-
nels. Comparing past cycles to current cycles is related to a 
semi-supervised learning scenario and should be considered 
for the choice of automated data analysis and visualization. 
Automated data analysis should be applied to highlight inter-
esting or conspicuous channels in the visualization. We also 
assume that the combination of several anomaly detection al-
gorithms leads to more significant findings, for which reason 
an ensemble method [28] should be considered for the visual-
ization.

T3 Examine conspicuous channels in multiple populations. After 
conspicuous channels have been detected by temporal trend 
analysis, engineers drill-down to examine and find differences 
between channel line plots of different populations. The com-
parison of interesting channels in different populations should 
be considered in the design.

T4 Detection of conspicuous channel relations. With exceptions 
on visualizing multiple trend line plots in juxtaposition, en-
gineers generally detect anomalies by univariate time series 
analysis of multiple channels. They also compare line plots 
with the given engine speed and engine torque. Considering 
relations between channels at a broader scale should be con-
sidered for automated data analysis and visualization.

T5 Reduce amount of data. Data reduction techniques should be 
taken into account for the visual analytics design to address 
many channels. The primary consideration for the visual ana-
lytics design is that interesting data should be highlighted to 
support engineers in their decision making.
4

Overall, data can only be analyzed by including extensive do-
main knowledge of users to the data analysis. Modern powertrains 
and engines are highly complex machines, and therefore domain 
experts are necessary to interpret results of automated data anal-
ysis through a visual analytics approach. In the next section, we 
introduce the anomaly detection methods we applied to the visual 
analytics approach.

5. Automated data analysis: anomaly detection methods

In research, anomaly detection often refers to a two-class clas-
sification problem, in which data either is classified as an anomaly 
or not. In general, a model is built on normal data, considering 
that the model can calculate an anomaly score on unseen data 
sets (apart from unsupervised methods). If the anomaly score ex-
ceeds a predefined threshold, the data record or the entire set 
is classified as an anomaly. We consider the application of semi-
supervised anomaly detection methods to our design T2. Most 
techniques are specific to different observational features, in con-
sequence of which we assume that an ensemble-based approach 
obtains more robust anomaly scores [28]. Therefore, we propose 
to map the results of different anomaly detection algorithms to a 
unified value for comparison purposes and describe three anomaly 
detection methods used in the visual analytics approach.

5.1. Unified anomaly score

Test cycles are the engineer’s unit of analysis, for which rea-
sons we choose them as the granularity level for data analysis 
(T1). To make different anomaly detection methods comparable in 
an ensemble-based approach, we propose the following to map 
anomaly scores to unified values between 0 and 1: (1) Interac-
tively select a reference cycle as input data for the training of the 
anomaly detection model. (2) A baseline cycle is selected to calcu-
late a baseline anomaly score. (3) Define a threshold anomaly score 
based on prior knowledge, domain knowledge, or historical data. 
(4) Further, the cycles’ anomaly score is calculated as the linear 
scaling from 0 (baseline) to 1 (threshold). Therefore, our approach 
needs the definition of a reference cycle for model training, a cy-
cle for baseline definition, and the definition of a threshold. The 
baseline anomaly score is used to consider a training error and, 
therefore, is taken as the lower limit of the unified anomaly score 
calculation. Note that the baseline anomaly score is calculated by a 
baseline cycle, in which data should be recorded temporally close 
to the reference cycle. Hence, we specify the cycle subsequent 
to the reference as the baseline cycle. Defining the upper limit 
(threshold) is critical and can be changed interactively in the visu-
alization. In the following, we discuss three methods, which have 
been applied to industrial sensor data in prior research. Another 
criterion for selecting these methods is the capability of identi-
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fying conspicuous channels separately for further drill-down and 
comparative analysis (T3).

5.2. Correlation-based anomaly score

Inspired by the approach presented by Zhao et al. [16], we as-
sume that the change of linear correlations between two sensors 
refers to an anomaly. During our research work, we investigated 
the application of correlation-based anomaly detection on testbed 
data. Despite its limitations, the method also has strengths that 
help solve the tasks defined in the design study. First, we highlight 
the main limitation in detecting anomalies by the change of lin-
ear sensor correlations, if throughout the durability test, no linear 
correlation between two specific sensors exists. Nevertheless, we 
examined that in testbed data, many linear correlations between 
sensors exist. For example, data from several temperature channels 
are likely to correlate. Experiments demonstrated that this method 
could detect anomalies in testbed data, and therefore has been ap-
plied to our visual analytics approach.

The basis for the correlation-based anomaly score is the corre-
lation difference matrix, which represents the deviation of linear 
channel relations between two testbed cycles. The correlation ma-
trix for each sensor combination of the reference cycle, the base-
line cycle, and the unseen cycle is calculated by using Pearson’s 
correlation coefficient. Then, the correlation matrix of the unseen 
cycle is subtracted by the correlation matrix of the reference cy-
cle, which results in the correlation difference matrix. As a result, 
the anomaly score is calculated as the average of all values in the 
difference matrix and is mapped to the unified anomaly score ac-
cordingly to the method explained before.

5.3. Regression-based anomaly score

As the second anomaly score, we make use of regression mod-
els for regression-based anomaly detection [18]. For this research 
work, we train regression models to estimate a time series. Con-
sequently, the model is applied to an unseen data set, in which 
the difference between the estimation and the real values (residu-
als) can be interpreted as anomalies. Considering this method for
T1 and T2, an anomaly score between populations or cycles needs 
to be calculated in a semi-supervised manner. Therefore, regres-
sion models with data of a user-defined reference cycle are trained 
for all channels separately. It is necessary first to standardize data, 
i.e., standardization of the entire time series to values between 0 
and 1, to make those channel regression models comparable. The 
regression models can now be used to estimate all channel time 
series for unseen cycles, and the anomaly score of one cycle can 
be calculated by the root mean squared error over all channels of 
a cycle. In the following, it can be mapped to a unified anomaly 
score accordingly to the method explained above.

We chose Random Forest regressor, as suggested by Breiman 
[42], considering that this model has been proven to perform well 
in many domains [43]. As input data for training channel regres-
sion models, engine speed and engine torque are chosen, since 
these two channels are given by the test and strongly relate to the 
majority of the channels (T4). Also, sliding window features for 
these two channels are extracted, whereas sliding windows con-
tain differences and mean values of three seconds into the past. 
We assume that in this time frame, the most relevant information 
can be extracted for our models. This approach aims not to esti-
mate each channel as accurate as possible, but to detect a change 
of anomaly scores between populations. As the correlation-based 
method, we are aware of the limitation that this method may not 
return a decent estimation for all channels, but it may be effec-
tive for some types of anomalies. This consideration should also 
5

Fig. 2. The glyph visualizes three anomaly scores and their ensemble (aggregate). 
Anomaly Score 1 visualizes a value of 0.1, Anomaly Score 2 visualizes a value of 
0.6, Anomaly Score 3 visualizes values of 1.0, whereas the equally weighted center 
visualized the Ensemble Anomaly Score of 0.6.

emphasize the choice of an ensemble method for the glyph-based 
visualization design.

5.4. Feature-based anomaly score

The third anomaly score is motivated by engineers’ typical ap-
proach to analyzing testbed data through temporal trend analysis 
(see Fig. 1). Some anomalies occur slowly over time and may be 
caused by the wearing of components. In contrast to point out-
liers [14], we consider that these anomalies may occur in a specific 
context and subsequence of the cycle, i.e., when the engine drives 
a particular engine speed. Considering this, we are interested in 
segmenting the time series of all cycles into equally sized win-
dows. Further, we calculate for each time window and channel a 
generic set of domain-relevant time series features. In consultation 
with domain experts, we consider a specific set of features such 
as mean, minimum, and maximum to characterize the behavior of 
channels. However, the feature set is not complete and can be ex-
tended by additional or more complex features (i.e., variance, stan-
dard deviation, kurtosis [44]). Consequently, features and windows 
are calculated for a channel in all windows and are aggregated to 
a single dataset describing a channels’ time series within one cy-
cle. This method is then applied for each channel on either the 
reference and unseen data sets. Anomalies between features of the 
reference and unseen data sets are calculated by a Euclidean dis-
tance measure [45] and are mapped to a unified anomaly score as 
proposed in the methods above.

6. Visual encoding and considerations

This section explains how we use three anomaly scores for a 
glyph-based visualization. Also, an example of how to identify con-
spicuous channels within a cycle either in a matrix representation 
and a ranked channel list is given. The visual considerations ex-
plained in this section will be brought together in the prototype, 
describing the visual analytics approach by the prototype imple-
mentation.

6.1. Cycle anomaly glyph

The proposed glyph in Fig. 2 is flexible and independent of the 
underlying analytical methods for anomaly detection, as long as it 
implements the framework for calculating unified anomaly scores 
between 0 and 1 (Section 5.1). Anomaly scores are mapped to the 
outer circular segments of the glyph representation to color a color 
gradient ranging from white (0) to red (1). When designing the 
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glyph, our aim was that no algorithm could detect all kinds of 
anomalies relevant for different applications. As a result, we choose 
an extensible glyph design, achieved by its circular shape, which 
offers the capability to add and remove anomaly scores in their 
according to circular segments. The glyph’s main visual focus stays 
at the center circle, which represents an equally weighted aver-
age of anomaly scores combined, labeled as the ensemble anomaly 
score.

During our work, visualization experts’ primary concern regard-
ing the presented glyph design was the benefit compared to more 
straightforward visualizations, such as line plots. As stated in the 
design study, line plots are a well-known visualization type and 
comprehensible to the target group. However, our approach has 
advantages over line-plot-based visualizations. In general, testbed 
cycles as granularity level are highly comprehensible for engineers. 
Therefore, cycles are visualized as individual and complete enti-
ties, whereas the glyph design offers the following opportunities: 
(1) As a visual entity, it can be selected by users for further ex-
ploration, reasoning, and drill-down. Also, glyphs can be selected 
interactively to be defined as the reference for the underlying 
semi-supervised learning algorithms to identify contrasts between 
populations (T1, T2). (2) The glyph design can be extended with 
several anomaly detection algorithms by adding additional outer 
circular segments. (3) The glyph can be visualized on its own as 
a quick overview of an engine’s condition. The idea is based on 
the idea of involved engineers having a simple “traffic light like” 
system, which also encouraged us to develop the presented glyph-
based approach.

6.2. Identification of anomalous channels

As stated above, we choose three anomaly scores by their ca-
pability to further explore single anomalous channels. After an 
anomalous channel has been identified in the glyph representa-
tion, users are interested in the cause of that anomaly. Therefore, 
we visually represent anomalies for all anomaly scores, as follows:

Matrix-based identification of anomalous channels. The cor-
relation deviation matrix calculated for the correlation-based 
anomaly score is shown in step (B2) of Fig. 3. Basically, in this 
symmetrical matrix, deviations of correlations of channels within 
a given cycle with respect to the selected reference cycle are 
visualized. More specifically, we compute the difference of the 
correlation matrices of these two cycles and show the result by 
color-coding the cells of the difference matrix. Hence, levels of red 
representing the anomaly score of channel correlations. This ma-
trix representation supports the analysis goal to determine and 
quantify visual patterns for pattern-driven visual exploration. With 
appropriate matrix reordering methods, we can use this display to 
search for typical patterns in matrix visualizations, including line 
patterns and block patterns [46]. Most importantly, if one sensor 
shows an anomalous behavior, its correlation difference values to 
many or all other sensors will be rather large, leading to line pat-
terns. Such visual patterns attract the attention of the analyst and 
are a starting point for drilling down into the respective sensor 
data (Fig. 3 (C2)).

Ranked channel list. The regression-based anomaly score and 
the feature-based anomaly score can be explored by the ranked 
channel list, as proposed in Fig. 3 (B1). Channels are ranked ac-
cordingly to the anomaly scores, calculated either through the 
mean average error (regression-based) or Euclidean distance mea-
sure (feature-based). Channels that deviate from the reference are 
listed and ranked by their anomaly score. This enables a guided 
approach for exploring anomalies and simplifies data analysis. By 
clicking on channel names, users can explore the reference and the 
anomalous channel time series by visual comparison in juxtaposi-
tion for hypothesis generation (Fig. 3 (C1)).
6

6.3. Prototype

The workflow of the approach, applied to data of the given 
use case, is exhibited and briefly described in Fig. 3. It shows 
screenshots of the implemented prototype, whereas further expla-
nations are given in the following: In (A) glyphs are placed in a 
grid, with each cell representing a test cycle in chronological or-
der (from top left to bottom right, inspired by the calendar-based 
view [47]). Note that the reference cycle is interactively selectable 
and represented by a white circle, as visible in the top left, or 
first, glyph. In (A), also three interaction possibilities are visible: 
(i) to add flexibility to the visual comparison of glyphs, the user 
can interactively change the anomaly score threshold to values be-
tween 50%–200% of the original value (ii) the user can change the 
number of displayed glyphs by filtering them by a “from–to” range 
slider (iii) glyphs can be filtered to visualize every xth glyph only. 
Anomaly scores of interesting glyphs can be selected for further 
exploration by a drill-down in (B1) and (B2): In (B2) a drill-down 
example to inspect and identify one or more conspicuous channels 
within the selected cycle by a matrix representation visualizing the 
correlation-based anomaly score is shown. An example of a visual 
perceptive line pattern is outlined, representing a possibly conspic-
uous channel. Further, the conspicuous channel can be selected in 
the matrix for exploration and comparative analysis with the ref-
erence line plot in (C2). In (B1), an example of the ranked mean 
average error representation of the regression-based and feature-
based anomaly scores is given, in which its drill-down capabilities 
are visible in (C1). In general, drill-down information needs to be 
investigated and interpreted by domain experts. However, our ap-
proach supports users in identifying interesting data by visually 
highlighting deviating cycles and sensors.

The prototype has been implemented using a Django Python 
web framework working in the backend and an Angular.js fron-
tend. Also the prototype is depended on the cyclic data structure, 
which is described in Section 4. Originally the prototype was de-
signed and implemented to calculate anomaly scores online after 
user interaction through the scikit-learn machine learning library 
[48]. Nevertheless, model training and calculations were too time-
consuming causing a significant time delay for the user. Therefore 
we anticipate all possible user interactions, especially the refer-
ence cycle selection, and precalculate models and the associated 
anomaly scores. For the given dataset, the precalculation takes 
roughly four days on an average working notebook. As a side note, 
interactive line plots and heatmaps in the prototype have been cre-
ated with the JavaScript visualization library Plotly.js [49] and are 
anonymized in Fig. 3, Fig. 5, Fig. 7 and Fig. 8 screenshots.

7. Evaluation

We conducted a qualitative pair analytics evaluation [9] with 
three subject matter experts (SME), who represent the target user 
group identified in Section 4.2, and the dataset described in Sec-
tion 4.1. The main target was to evaluate either the comprehen-
sibility of the different views and the underlying automated data 
analysis, along with the capabilities and limitations in supporting 
users with their daily condition monitoring analysis goals. Accord-
ing to the pair analytics protocol, the evaluation is done by a 
human-to-human interaction of one SME and one visual analyt-
ics expert (VAE), in which the SME acts as the navigator and the 
VAE as the driver (operator) of the visual analytics tool. In gen-
eral, all three SME participants stated that the visual analytics tool 
could be of great benefit to support them in their daily work for 
two reasons: The visual analytics tool supports engineers in ana-
lyzing testbed data (1) more efficiently by highlighting interesting 
data on different granularity levels and (2) more effective by en-
abling the analysis of the entire dataset and not only a subset of 
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Fig. 3. (A) Left: Differences between the selected reference cycle and other cycles can be explored, whereas glyphs are positioned in a time-ordered grid. Right: Besides 
some filter capabilities, the anomaly score threshold can be interactively changed by a ruler. (B1) Anomalous channels found by the regression-based anomaly score can be 
explored by the ranked mean average error channel list. (B2) Anomalies found by the correlation-based anomaly score can be explored in the matrix representation (C) A 
hypothesis can be evaluated by comparing the channel time series in the reference cycle and the cycle of interest.
well-known channels. To give evidence to that statement, we con-
nect participants comments and actions during the pair analytics 
evaluation to the task definition of Section 4.3 in the following:

Each evaluation session of two hours started with an introduc-
tion to the visual analytics approach and a short demonstration 
of the prototype. It is notable that all three participants (P1, P2,
P3) gained a quick understanding of the concept for two reasons: 
First, we conducted the design study with the same engineers and 
connected findings of the study with explanations of our visual 
analytics tool. Second, the design study clearly identifies the tasks 
and goals of engineers. Therefore the visual analytics prototype ac-
curately addresses the needs of engineers. In general, participants 
appreciated our effort in developing a decision support system 
supporting engineers in handling a large amount of data for their 
condition monitoring tasks.

The actual pair analytics evaluation sessions started by defining 
a reference cycle in the glyph-based overview (T2). P1 and P3 ap-
preciate the capability of selecting the reference cycle interactively 
in the visualization. However, P2 questioned the necessity of inter-
actively selecting the reference cycle, because the testee is likely to 
be in good condition before the first cycle, considering that the tes-
tee runs through an extensive health check at the beginning of the 
entire durability test. We are aware of the fact that selecting the 
first cycle may be an appropriate default choice, but we wanted to 
keep the analysis more flexible. Nevertheless, all participants se-
lected the first cycle as their reference.

After the reference cycle has been selected, other glyphs in the 
overview turned red regarding their anomaly scores (see Fig. 3
(A)). All participants were immediately curious about exploring 
these anomalies by the visualization and easily identified cycles 
that appear interesting to them (T1). P2 and P3 pointed at cy-
cles that had a more intensive color of red than the majority of 
all cycles, whereas P1 mentioned that all glyphs that visualize at 
7

least a small anomaly score are interesting. However, in a produc-
tive use scenario, the exploring strategy may differ since not all 
cycles are available from the beginning, and new data would be 
explored incrementally regularly as it becomes available. At this 
stage of the visual data analysis interesting data is visually high-
lighted, which enables the further exploration of anomalies in the 
succeeding views (T5).

T3 and T4 are both achieved by exploring one anomaly scores 
of a specific cycle: (1) The correlation-based anomaly score and the 
correlation difference visualization in Fig. 3 (B2) were comprehen-
sible to the participants as they were able to identify conspicuous 
channels. However, participants articulated the need for a more 
guided approach to engaging engineers using the matrix visualiza-
tion because it appears overloaded and overwhelming to engineers. 
(2) The regression-based anomaly score was also highly compre-
hensible to participants since they have a general understanding of 
regression models. On the other hand, we avoided explaining the 
actual regression model Random Forest to participants in detail. 
In comparison to the correlation difference matrix, participants 
commented that the exploration of conspicuous channels is more 
accessible by the ranked channel list (Fig. 3 (B1)). Also, they ex-
pressed their interest in additional guided approaches in the other 
views, considering that such rankings represent an exact order on 
what channels to focus on, especially if they are short of time dur-
ing their analysis.

As the last step of the visual analysis, participants evaluated the 
hypothesis of channels being anomalous by comparing anomalous 
line plots with their reference cycle equivalents (see Fig. 3 (C1 +
C2)). From a data perspective, engineers approved that all explored 
anomalies are interesting because they highlight a significant dif-
ference to the reference. Some of the anomalies were interesting 
from a domain perspective, but others were explicable and irrel-
evant for the condition monitoring task. Another type of anomaly 
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Fig. 4. A domain-irrelevant anomaly recorded by a temperature sensor in the engine.

that has been detected during evaluation is related to defective 
or unconnected sensors. Line plots of these anomalies visualize a 
constant or noisy signal. Therefore, we characterize three types of 
anomalies that have been found during evaluation: (1) Domain-
irrelevant, (2) Domain-relevant, and (3) Defective sensors.

During evaluation data of a past 2,000 hours durability test 
was available. We managed to explore about one twentieth of the 
whole dataset and on average 30 anomalies in each evaluation ses-
sion. It is worthwhile noting that in the first cycle, which all par-
ticipants selected as the reference, two sensors were not connected 
to the system. Therefore, those sensors prominently showed devi-
ations in all other cycles, which information is domain-irrelevant 
after the sensors got connected. This underlines the significance 
of the reference cycle selection along with the uncertainty of an 
industrial dataset. SMEs were able to confidently interpret 90% of 
the explored anomalies, whereas for the other 10% SMEs were en-
thusiastically using the prototype to further explore the temporal 
evolution of the anomaly in other cycles to further generate hy-
pothesis.

Overall, we evaluated that the visual analytics prototype re-
ceives acceptance from all participants. They confirm the benefit 
of the proposed visual analytics approach and are interested in us-
ing the prototype in a production scenario. In the next section, we 
discuss the aspects and results of the evaluation in greater detail 
to motivate future and ongoing work in the subsequent sections.

8. Discussion

Our visual analytics approach has been designed and evalu-
ated on testbed data, but we emphasize that it is not limited to 
the automotive domain. At least the glyph-based overview should 
be applicable to any other cyclic multivariate data set, as long as 
the underlying automated data analysis methods and dependent 
visualization techniques are adapted to the specific domain, if nec-
essary. The visual analytics prototype has been proven to be useful 
for collaborators, as they clearly identified advantages in terms of 
efficiency and effectiveness compared to their current workflow. 
As a generic abstraction of anomalies in the glyph-based overview, 
the calculations of anomaly scores are exchangeable, and more 
extensive research on additional anomaly detection methods for 
the use case needs to be done. Our approach has been intended 
to be a generic solution for cyclic time series data. Nevertheless, 
developing anomaly detectors tailored to the domain-specific char-
acteristics of data and possible anomalies could be of great benefit 
in any application domain.

The evaluation demonstrated that anomalies could be charac-
terized in three manners, and we discuss examples of all of them, 
each detected by a different anomaly detector as follows:

(1) Domain-irrelevant: In a dynamic process like a durability 
test, with changing environmental variables throughout the sea-
sons, many anomalies can occur from a data perspective. In con-
trast, from a domain perspective, many of these anomalies are 
8

Fig. 5. Comparison of reference (blue) and anomalous time series (orange) in su-
perposition shows a reflection phase change in the highlighted subsequence. (For 
interpretation of the colors in the figure(s), the reader is referred to the web ver-
sion of this article.)

plausible and, therefore, domain-irrelevant for the given condition 
monitoring task. For instance, in Fig. 4 an anomaly, which has been 
explored during the evaluation, is illustrated by two line plots. The 
upper line plot visualizes the reference, and the lower line plot vi-
sualizes the suspicious time series of a sensor measuring a relevant 
airflow temperature in the engine. From a data perspective, the 
suspicious time series sequence can be interpreted as an anomaly 
because of the evident differences. Nevertheless, to clarify the ex-
ample further, the anomaly has been recorded four months after 
the reference. The anomaly simply illustrates the periodic oscilla-
tion of the heating control, which was turned on during the test 
and, therefore, also influenced the testbed data. This anomaly has 
been detected through the correlation-based anomaly score. Pair-
wise relations between temperature channels often linearly cor-
relate, which lies in the nature of physics. However, if a single 
temperature channel deviates in its behavior like in the given an 
example, it is visually recognizable in the correlation deviation ma-
trix as proposed in Section 6.

(2) Domain-relevant: Returning the example in Section 3, we 
now discuss how this failure could be detected through our vi-
sual analytics approach. Considering that the temperature increase, 
which caused the failure, appeared only in a specific context, the 
failure could have been detected through the similarity-based ap-
proach. The temporal binning applied in that approach adds sen-
sitivity for the detection of subsequence outliers [14]. It supports 
the detection of the relevant subsequent time series indicating the 
problem related to our example. For the use case, in particular, 
the method may profit from a domain-knowledge-based binning 
technique to examine specific domain-relevant operating modes 
separately, if possible. However, we present a generic approach, 
and it is up to the domain and use case what binning technique to 
apply.

The channels in our dataset are strongly related with each 
other and represent the underlying physics of a combustion en-
gine. Therefore anomalies and misbehavior of components in the 
engine may be detected in several channel time series. Regarding 
our example, we first could detect the problem through another 
sensor, measuring the temperature of the liquid that is responsible 
for cooling the critical component (see Fig. 1). The anomaly can be 
recognized as a reflection phase change in the temperature of that 
liquid in a specific subsequence of the cycle compared to the ref-
erence (Fig. 5). It indicates a problem with the liquid that, in the 
end, caused the failure.

(3) Defective sensors: The third category of anomalies that have 
been detected during the evaluation is defective sensors. These 
anomalies can occur in the whole test cycle and may be recog-
nized by implausible or constant values. Nevertheless, they also 
occur in subsequences of a cycle because the malfunction ap-
pears occasionally. One example that has been detected through 
the regression-model-based anomaly detector is illustrated in Fig. 3
(C1): The figure illustrates an anomalous temperature time series, 
which shows similar behavior to the reference. However, tempera-
ture drops, which are not plausible from a domain point of view, 
indicating that the sensor is defective and needs to be replaced.

To conclude the evaluation and the discussion, we want to em-
phasize that domain expertise is essential for our dataset’s condi-
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Table 2
Anomaly knowledge-base example records. User-labels are stored in a database representing data to recall anomalies for further automated processing.

Id Description Channel Cycle id Ref id Start End Range start Range end Class

1 suspicious temperature drop Channel 43 116 1 08:34 09:23 15,54 67,43 Drop

2 shift in whole time series Channel 12 194 1 00:00 16:00 32,32 49,34 Shift

3 shift at the end of the test Channel 2 276 1 14:34 16:00 101,31 105,56 Shift

4 unexpected peak Channel 80 403 1 03:43 03:56 93,95 104,66 Peak
Fig. 6. The current workflow (blue) is extended by a visual interactive labeling inter-
face, collaborative feedback and anomaly classification (green). (For interpretation of 
the colors in the figure(s), the reader is referred to the web version of this article.)

tion monitoring goals. From a data point of view, many anomalies 
occur naturally on automotive testbeds and similar datasets. Ex-
tracting valuable knowledge depends on both the extensive expe-
rience and know-how of engineers. In the next section, we process 
our findings and propose a visual interactive labeling interface for 
anomaly classification.

9. Visual interactive labeling and anomaly classification

The visual interactive labeling (VIAL) interface is a collaborative 
tool that enables the capturing of domain knowledge for verifi-
cation support as an extension of the presented approach. Our 
conceptual workflow process, from Fig. 6, derives from the VIAL 
process by Bernard et al. [50] and illustrates the current process 
(blue) and the visual interactive labeling and classification exten-
sion (green). The extension mainly consists of three procedures 
that are further explained in the following subsections: the visual 
interactive labeling interface, collaborative feedback and anomaly 
classification.

9.1. Visual interactive labeling interface

In the last step of the analysis process in our prototype, users 
compare line plots of the anomalous time series to its reference. 
They interpret the anomaly by their domain knowledge and should 
be able to store their findings for three purposes: (1) record find-
ings for future reference, (2) classification of anomalies in un-
seen datasets and cycles, and (3) request collaborative feedback 
of domain experts. The evaluation showed, that the diversity and 
large number of recurring anomalies in testbed data require an 
anomaly classification. Users should be able to define domain-
related anomaly classes themselves. Also, users should be able 
to select a subsequence in the time series that they interpret as 
an anomaly and additionally assign a class and a textual descrip-
tion of their interpretation. It is essential to consider that putting 
an anomaly into the context of the references facilitates the rea-
soning for it. A first version of the labeling interface has been 
implemented and is illustrated in Fig. 7. A label stores several 
metadata of the anomaly (i.e., cycle numbers of the reference and 
the anomaly, channel names), a user-selected subsequence of the 
time series, a user-defined anomaly class, and a textual descrip-
tion of the anomaly. The provided metadata offers starting points 
for further analysis, e.g., categorization of lables by failure type, or 
automated linking to stored test reports from previous cycles. The 
more data is collected in the anomaly knowledge-base, the more 
opportunities to cross-link and compare anomalies are given.
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9.2. Collaborative feedback

The collaborative feedback allows additional domain experts 
to explore and refine anomaly labels. Especially if the user has 
questions about the anomaly, additional feedback can improve 
the anomaly knowledge-base quality. Further, users can add self-
defined classes, which have significant influence on the automated 
anomaly classification. Hence, the quality of these classes should 
be improved using the feedback of multiple domain experts.

9.3. Anomaly classification

A challenge we tackle in our ongoing work is the classification 
of anomalous time series by using the anomaly knowledge-base. 
We explicitly focus on a generic approach, which is not neces-
sarily attached to the automotive domain. Anomalies in our work 
often occur in the context of their reference. Therefore, the anoma-
lous time series, as well as the difference between the anomalous 
and reference time series need to be taken into account for a 
classification. In the first step an abstract description of time se-
ries labels for classification task needs to be given. Consequently, 
we normalize time series labels and extract a set of generic time 
series features from both the anomalous time series and the dif-
ference time series between the anomaly and the reference. The 
idea behind this approach is that time series anomaly classes can 
be either described as a univariate or as bivariate in the context 
of the reference. Therefore, we extract the following time series 
features from the anomalous time series, as well from the differ-
ence time series: mean, minimum, maximum, median, kurtosis, 
skewness, number of peaks, standard deviation, absolute sum of 
changes and length.

As a generic approach, our system has no foreknowledge or 
descriptions about anomaly classes, which are entirely user-label-
defined. Therefore, we explored the given dataset and experimen-
tally defined five time series anomaly classes that may be interest-
ing in time series anomaly classification tasks: (1) Drop (2) Shift 
(3) Peak and (4) Oscillation. Since the anomaly classifier should 
also be able to distinguish between anomalous and normal time 
series, we also defined a class (5) No Anomaly. In the next step, we 
further explored the automotive dataset and labeled 40 anomalies 
accordingly to the five self-defined anomaly classes as a training 
data set. Example labels from the anomaly knowledge-base are il-
lustrated in Table 2. Consequently, we extracted the generic time 
series features for the labels and trained a random forest classifier 
[42]. The training error of the model was zero, which is an indi-
cator that the generic time series feature set may give a sufficient 
description of the anomaly classes. To experimentally investigate 
the performance of the classifier, we tested the model on un-
seen anomalies. The results look promising, considering that the 
system has no foreknowledge about anomaly classes, which are 
described by generic time series features and a small user-label 
training data set. Two examples are shown in Fig. 8, whereas we 
added the model confidence by the prediction probability for each 
class.
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Fig. 7. Labeling interface for building an anomaly knowledge-base and for classification. (A) The user can interactively select a subsequence of the anomalous time series by 
mouse drag. The selection is linked and synchronizes with the reference time series to visually aid the comparison. (B) Metadata from the dataset is automatically filled in 
the input fields of the user interface (gray background color) (C) Users can select an existing category / class for the anomaly or create a new one. Also, a textual description 
of the anomaly must be given.
Those preliminary results open up many directions for future 
work and are discussed, among others, in the next section.

10. Future work

The main challenge in the presented dataset is the massive 
amount of occurring anomalies. Exploring them can be very time 
consuming, even if our prototype facilitates the anomaly explo-
ration process. It is also notable that the same durability test is 
often conducted on multiple identical testees in parallel, which 
enables a more comprehensive analysis. On the one hand, the anal-
ysis of numerous testees would increase the size of the dataset 
even more, but on the other hand, it allows exchanging knowledge 
among them. To take this one step further, we address preserv-
ing knowledge of past durability tests to analyze novel engines 
and present tests. Therefore, we are currently investigating the 
automated classification of anomalies through the user-centered 
interactive labeling anomaly knowledge-base. To make data anal-
ysis more efficient, we also consider guided approaches for future 
work. This is related to the classification of anomalies through the 
anomaly knowledge-base. Additionally, research on the reasoning 
of anomalies needs to be conducted, whereas we plan to focus 
on visual causality analysis [51] to explore the root cause of an 
anomalous time series. In the next sections, we describe the focus 
of our ongoing work and future work.
10
10.1. Visual interactive labeling

Preliminary results on the interactive labeling of anomalies 
open up promising directions for future work. We hope that fur-
ther investigations reveal that anomalies can be detected and clas-
sified into user-label-trained classes. As the next step, we propose 
the automated classification of anomalies to reduce workload of 
users by setting their focus on unknown not classifiable anomalies. 
Some time series anomalies occur in the context of multiple vari-
ables. Therefore, we also suggest to take multivariate time series 
labeling into account to make the subsequent classification more 
comprehensive to the user.

10.2. Guidance

Domain experts can use our tool to interactively label anoma-
lies that have either been found automatically by the system or 
detected by the users due to their domain knowledge. This is 
an important functionality of anomaly detection systems, as the 
detection may include false positives, or the severity of detec-
tion may change over time. Such labels are saved and collected 
in an anomaly knowledge-base. In the future, we will develop a 
self-learning system that learns from the collected labels to au-
tomatically identify and classify unknown use-case, situation- and 
context-specific anomalies. From a growing set of anomalies, learn-
ing methods will be able to generalize the labeled patterns, in-
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Fig. 8. Two time series have been classified by a user-label trained classifier. Both examples show a time series (bottom) and its reference (top). The yellow background 
is the subsequence that we interactively selected in the prototype, whereas the classifier results on the selection are illustrated on the right. Example 1 shows pressure 
measurements, which time series is very similar to its reference. The classifier correctly classified the time series as “No Anomaly”. Example 2 shows a temperature times 
serie, which suspiciously drops at the end in comparison to its reference. The classifier classified this time series correctly as “Drop”.
cluding the domain knowledge, and hence support more efficient 
anomaly detection and less user-label requirements for future op-
erations. An important part of the system will be to provide tech-
niques (e.g., visualizations) and guidance approaches [52] to sup-
port the users to identify and understand the factors producing 
the anomalies (cf., root-cause analysis) and to compare the possi-
ble change of anomalies over time.

10.3. Visual-aided causal discovery

Future extension of the current work is to go beyond mere cor-
relations and engage causal discovery methods [53] to be able to 
recover the true root-cause of triggered anomalies via advanced 
visual analytics techniques. Such novel approaches can facilitate 
more robust and reliable anomaly detection methods, as domain 
knowledge can be seamlessly injected into the causal models with 
various interactive visualization tools. Existing works by Holst et 
al. [54] or Wang and Mueller [51] incorporate causality with in-
teractive visualization tools that demonstrate promising results in 
this direction. However, the former methods are not taking into 
account time series data, which causality plays a significant role 
since, in the context of time the cause must always precede the effect. 
For future work, we aim at addressing the above challenges.

10.4. Scalability

The current state of the proposed system lacks maturity in 
terms of scalability in different views, which we address for fu-
ture work. The glyph-based overview (see Fig. 3 (A)) does not 
scale well for many cycles. Therefore, future work will concen-
trate on advanced visual aggregation and composition techniques 
[55] for the glyph-based overview. Another occasion to improve 
scalability would be clustering and visual evolution tracking, as 
proposed by [56]. In comparison to the current grid-based system, 
such techniques could be of great benefit to the user. It also may 
11
support the user applying a data-driven way to choose reference 
data. For future work, we also address the scalability and usabil-
ity of the matrix view. For example, a Magnostics approach [57]
to search and rank patterns in the correlation deviation matrix, 
combined with other interactions, would reduce complexity and 
support users in exploring interesting channels. The glyph design 
has been developed on a small set of anomaly detectors. There-
fore, another opportunity for future work is the investigation of 
additional anomaly detectors, but also the limitations of the cur-
rent glyph design in terms of the scalibility.

10.5. Evaluation

The conducted prototype evaluation focused on the comprehen-
sibility of different views and the underlying data analysis, but 
did not quantify the performance of our prototype. To further our 
research we intend to perform quantitative evaluations of the pro-
totype regarding the anomaly detection and exploration, but also 
of the ongoing work on anomaly classification through user-label-
trained classifiers. The investigated industrial dataset is unsuitable 
for a quantitative study by reason of missing labels and uncertainty 
in the data. Therefore we plan to evaluate with a public dataset.

11. Conclusion

In conclusion, we presented a glyph-based visual analytics ap-
proach visualizing an ensemble of several anomaly detectors. It 
has been designed and applied to automotive testbed data and 
enables the visual exploration of anomalies of cyclic multivariate 
time series data. The prototype evaluation results are promising, 
and we have found ways to potentially increase the effectiveness 
and efficiency of the domain experts’ data analysis. Present find-
ings revealed that from a data perspective, many anomalies occur 
on the investigated dataset. As a consequence, we provided de-
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tailed concepts and preliminary results on the continuation of the 
presented work.
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