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Abstract—
End-of-line tests and defect detection are vital for ensuring the reliability of electric
motors. However, automated defect detection methods, e.g., data-driven
approaches, face challenges due to the limited availability of real data from failed
motors. Simulated data, though beneficial, lacks the complexity of real motors,
impacting the performance of these methods when applied to actual observations.
To tackle this challenge, we introduce a visual analysis tool designed to facilitate
the analysis of measured and simulated data, presented in the form of time series
data. This tool helps identify domain-invariant features and evaluate simulation
data accuracy, assisting in selecting training data for reliable automated defect
detection in real-world scenarios. The main contribution of this work is a design
proposal based on visual design principles, specifically tailored to address the
unique requirements of electric motor professionals. The visual design is validated
by findings from a think-aloud study with specialized engineers.

T he world we live in today is powered by sys-
tems, machines, and processes that are the
results of engineering. Electric motors are at

the basis of many industrial and domestic applications,
converting electrical energy into various forms of me-
chanical energy in a highly efficient manner. Their per-
formance affects key indicators such as consumption,
lifetime or performance of the mechanical process.
This places high demands on the validated design of
electric motors.

To ensure that each electric motor produced func-
tions properly and meets the target characteristics, the

XXXX-XXX © 2024 IEEE
Digital Object Identifier 10.1109/XXX.0000.0000000

motors are tested at the end of the production line. This
process is called end-of-line testing. Besides traditional
physics-based failure prediction models, so-called ex-
pert systems, contemporary data-based approaches
open up new possibilities.
The achievable quality of such data-based models for
automated defect detection depends heavily on the
quality and quantity of available data. However, real
data from motors on the verge of failure is sparse,
as each production line inherently aims to produce
only defect-free motors, resulting in many more end-
of-line tests being performed on correct motors than
on defective motors. In order to obtain more real
data from defect motors, such motors would have to
be produced on purpose, which is not economically

April Published by the IEEE Computer Society IEEE CG&A 1

This article has been accepted for publication in IEEE Computer Graphics and Applications. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/MCG.2024.3392969

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Technische Universitaet Graz. Downloaded on May 27,2024 at 06:20:07 UTC from IEEE Xplore.  Restrictions apply. 



Electric Motor Data Exploration

viable. To expand the set of training data in a more
efficient way, motor defects can be simulated. However,
each simulation model is likely to deviate from the
real system. Consequently, automated defect detection
methods trained on simulations will most likely lead
to a drop in performance. Marth et al. [1] introduce a
method that utilizes a model trained on simulated data
of healthy and faulty motors to generalize to real-world
measurement data. The method relies on the crucial
assumption that the domain shift between measure-
ments and simulation results remains constant under
different system operating conditions. The visualization
approach proposed in this work aims to either confirm
this assumption by seamlessly inspecting measured
and simulated data, or, if not valid, identify features
within the time series with minimal variance with re-
spect to the two domains in the parameter space. Vi-
sualizations, rooted in fundamental principles of visual
cognition, provide a universal and intuitive means for
interpreting complex data by users. By representing
time series data graphically, users can quickly grasp
the overall structure and identify critical features.

The main contribution of this work can be sum-
marized as a design proposal based on established
principles of visual design and a thorough require-
ments analysis of the target domain, thus seamlessly
adapting to the specific needs of professionals in the
field. We propose an interactive analytical lens that
enables a context-dependent identification of patterns
between simulation and measurement data. The lens
operates in the space of torque and rotational speed,
which are fundamental motor engineering parameters,
and supports finding global and local patterns in this
space. In addition, we present the results of a use case
scenario that gives an insight into the application of
the proposed tool from the perspective of an electric
motor engineer. A think-aloud study, involving three
engineers with specialized knowledge, validated the
visual design. Their insights proved invaluable, given
their firsthand experience. While the overall tool re-
ceived positive feedback, we identified areas for im-
provements to enhance the overall usability of the tool.

RELATED WORK
We structure previous works along our two main contri-
butions: the analysis of motor behaviors and the visual
exploration of time series data.

Methods to analyze the behaviour of electric motors
are diverse, ranging from physics-based expert sys-
tems [2] to black-box models using artificial intelligence
[3]. The recent research activities and the traditional
expert analysis methods are summiarized in [4], [5].

A common source of information is time series data
generated by current or voltage probes, acceleration
sensors, or other specialized measurement devices
that are sometimes complemented with simulated time
series from a digital twin [6]. The time series data is
commonly processed by, e.g., fast Fourier or wavelet
transformations that produce characteristic frequency
signatures. Black-box models or human experts then
map these signatures to motor defects. In previous re-
search [1], combining simulations and measurements
enhanced the prediction capability of black-box mod-
els. Our goal is to utilize human domain expertise
to analyze simulated and measured time series data,
identifying defect-specific features that a data-driven
model can exploit.

Various approaches exist for visually exploring time
series data. Circular visualizations, such as those by
Zhao et al. [7], efficiently display tree structure rela-
tionships, while highlighting cyclic patterns, as seen in
the work by Ceneda et al. [8]. Hao et al. [9] dynam-
ically allocate display space to show sub-intervals in
long time series at varying resolutions based on user
interest. Different data processing methods have also
been applied to enhance visualization and exploration.
For instance, Shi et al. [10] use reinforcement learning
to offer exploratory visual analysis suggestions, while
Andrienko et al. [11] abstract multi-variate time series
distribution to episodes and topics for applying topic
modeling techniques. Another approach involves di-
mensionality reduction [12] to visualize multi-variate
time series. In the domain of electric motors, prior
methods have simplified comparisons across numer-
ous measurements at various construction stations
during manufacturing [13], and visualized trade-offs in
motor characteristics during design [14]. In contrast,
our tool concentrates on end-of-line electric motor
data.

The core view of our tool uses a scatterplot [15].
The two axes of the scatterplot represent the operating
conditions of the electric motor as an engine map,
showing rotational speed on the horizontal axis and
torque on the vertical axis. Each scatterplot entry rep-
resents one measurement time series and one simula-
tion time series. Our tool utilizes semantic zooming [16]
to transform scatterplots and employs lenses, similar
to the Magic Lenses framework [17], for aggregating
multiple scatterplot entries.

DOMAIN CHARACTERIZATION
We start by introducing fundamental concepts of elec-
tric motors and their end-of-line testing. Based upon
that, we provide a characterization of the data and
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tasks that engineers face when searching for domain-
invariant features in cases where measurements and
simulations differ from each other. We conclude with a
number of requirements to be addressed by the visual
tool.

End-of-Line Testing Background
For products with critical importance in their opera-
tional use case, e.g., security-relevant devices, end-
of-line testing is an essential step in the production
process [18]. It validates the functionality of units near
the end of the production line. Products that do not
function or whose characteristics do not match the
tolerance band around the target characteristics must
be identified and removed from the further production
or sales process. To shorten production cycles and
improve reliability, automated testing increasingly re-
places manual inspection performed by human opera-
tors.

We choose an end-of-line test for permanent mag-
net synchronous motors (PMSM) as a use case, be-
cause they are a popular choice for applications which
demand high efficiency and power density. These
range from the automotive sector to industrial drives
and household appliances or medical devices but con-
tinue to expand into all other fields of use of electric
motors. Diverse defects can occur during the manu-
facturing of PMSMs, many of which are related to ge-
ometric deviations of motor parts or to misplacements
of magnets, windings, or angular sensors. Misplaced
angular sensors produce an erroneous rotor angle ’ as
input to the motor’s control circuit. This results in incor-
rect control currents, leading to a non-optimal working
point with reduced motor efficiency and torque ripple,
and, in the extreme case, reduced lifetime. We choose
a misplaced angular sensor as the defect property
under investigation, because its measurements can be
easily emulated by manipulating the control software
of the frequency converter of an otherwise functioning
motor. Going forward, the amount by which an angular
sensor is misplaced will be denoted as ’rotor angle
offset’ or ’angle offset’. Despite the use of misplaced
angle sensors for this work, the approach is versatile
and can be applied to any situation with available time
series measurements and simulation data. It helps in
the identification of range shifts and the investigation
of time series signals within a given two-dimensional
state space.

A motor in an end-of-line test is exposed to different
load points to observe its response using different
sensors. Because the phase current signals can be
obtained relatively easily, they are often used as the

primary source of information. The resulting multivari-
ate time series typically do not show characteristics
that can be directly attributed to a specific error. Er-
roneous rotor angles, for example, will lead to the
phase current signals being distorted with respect
to their characteristic shape (e.g., sinusoidal shapes)
and their amplitudes. However, as the distortions can
also originate from varying load conditions, a simple
mapping of the time series acquired during the end-
of-line test to a particular error is not possible.

For a model to automatically identify motor defects
from the current signals, training data is essential.
While real-world data from motors functioning as in-
tended might be plenty, data from motors at or near
failure is much sparser. In such cases, the training data
can be augmented with synthetic data, i.e., simulated
motor defects [1]. Synthetic data can be generated in
a controlled way to only contain a specific error. This
means that it is available in large amounts, can be
properly labelled and most often does not require prior
data cleansing since it is not subject to sensor noise
or external disturbances.

Despite its advantages, a simulation model can
only approximate the real-world behaviour of the motor.
Many data-driven models (e.g., for fault detection),
however, rely on the assumption that the data samples
to be used for training are drawn from the same
distribution. Therefore, characterizing the shift or dif-
ferences between these data distributions becomes
crucial for ensuring the training of an accurate and
reliable model. A human-in-the-loop approach using
interactive visualizations enables experts to proactively
identify and understand subtle shifts or discrepancies
between the simulation and real-world data distribu-
tions. Through direct interaction with visual represen-
tations, experts can identify differences in the data
distributions and, if necessary, pre-process the data for
model training, thereby guaranteeing a more precise
and resilient representation of motor behavior.

Data
The time series data describe the behavior of the
permanent magnet synchronous motor (PMSM) un-
der different load conditions. Measurement data is
acquired using a dedicated test bench (Fig. 1). The
setup consists of 1) the motor under test, 2) a high-
resolution encoder to measure the rotor angle, 3) a
break and a torque sensor to control the load condition,
and 4) a power electronics to control the motor and the
brake and to measure the motor’s phase currents.

Simulation data is acquired using a surrogate
model of the motor that is created based on finite
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FIGURE 1. Test-bench to gather measured time series data
of the motor’s phase currents under certain load conditions.

FIGURE 2. Simulation chain to gather time series data of the
motor’s phase currents under certain load conditions.

element simulations [19]. Using this model, transient
simulations can be performed to generate time series
data of the motor’s phase currents under different
load conditions (Fig. 2). Motor modeling and simula-
tion were performed with SyMSpace, a development
and optimization tool for mechatronic components and
systems [20].

With the test bench and the simulation framework
at hand, 1476 randomly selected load points, i.e.,
combinations of rotational speed and load torque, were
evaluated (Table 1). For each measurement, a simula-
tion with the same load point and error was performed.
This opens up the possibility to directly compare the
measurement and simulation time series.

1106 measurements do not show an erroneous
rotor angle, while 370 measurements do. Equivalently,
1106 simulations do not show an error and 370 sim-
ulations do. All measured time series contain a fixed

TABLE 1. Operation parameters of the motor for measure-
ments and simulations. A motor with a rotor angle offset
between 28� ,el and 32� ,el is considered defect-free. � ,el

designates degrees in the electrical reference frame, where
in case of the motor under test � 10� ,el means a deviation
of � 2.5� mechanically. This range for the correct rotor angle
offset was determined to be useful for this specific motor setup
by domain experts. Other electric motors might necessitate a
change of the correct value range.

The time series have been sampled at 50� s.

Parameter Min. Max. Unit Description

n 1003 4030 rpm Rotational speed
T 0.1019 0.6696 Nm Load torque
' offset 20 39 � ,el Rotor angle offset

number of 408 samples with a sampling rate of 20,000
samples per second, leading to a fixed time series
length of 0.02035 seconds. The simulations have the
same sampling rate but contain a varying number of
samples between 298 and 1197.

Task Analysis
We identified the following key tasks and analysis
questions based on readings about the target domain
background as well as feedback and existing research
from domain experts in electrical engineering [4], [21].
Asking three experts about their current workflows and
discussing an exemplary usage scenario in multiple
sessions provided us with a fundamental understand-
ing of the targeted problem. This resulted in three key
Tasks (T) for the analysis of time series data during
end-of-line testing:
� T1 - Simulation Validation: Determine how well

the simulation model approximates the real-world
measurements. If the simulated time series are not
representative, they will not provide meaningful in-
formation that can be used for defect detection.
This leads to the question what level of precision
is required. An additional benefit of comparing mea-
surements to simulations is the ability to determine
under which load conditions the simulation model
works well or poorly.

� T2 - Visual Feature Exploration: Identify time se-
ries characteristics that meaningfully relate to certain
motor conditions (e.g., full operability or defects).
The characteristics need to be domain-invariant, i.e.,
they should help distinguish between defective and
non-defective motors in both the measurement and
the simulation domain.

� T3 - Process Improvement: Identify load condi-
tions where correct and defective motors cannot be
clearly distinguished. This could hint at load points
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that should be tested in more detail to increase
the expressiveness of visual features with regard to
defect detection. Also identify load conditions where
real-world measurements are inconsistent compared
to expectation based on the simulation. This could
suggest a problem at the end-of-line testing station.

DATA PRE-PROCESSING
Given the heterogeneous data sources, certain pre-
processing steps are necessary to ensure that simu-
lated and measured time series can be shown in a
consistent way. This is critical for comparisons across
different load conditions.

Measuring the phase currents of the PMSM results
in three time-shifted but otherwise identical time series
at each load point. To avoid redundancy, only one time
series representing one of the phases is visualized.
This also matches the cardinality of the single simula-
tion time series.

Due to measuring time-shifted phase currents, the
measurement time series and the simulation time
series do not overlap perfectly. To correct this, we
perform a cross-correlation analysis on each pair of
measurement and simulation. For different time shifts,
the sample correlation coefficient [22] between mea-
surement and simulation is calculated. The simulation
is then shifted by the time step corresponding to the
largest coefficient.

As mentioned previously, the number of samples
in simulated time series varies, while the number of
samples for each measurement time series is constant.
To keep comparisons consistent, the length of longer
simulations is trimmed to the length of measurements.

When aggregating multiple time series, the rota-
tional speeds at which they were captured varies.
Because the period length of the phase current pattern
depends on the rotational speed, this leads to a prob-
lem when calculating the average time series (Figure
3a). This problem is solved by converting the x-axis
for each time series from time to rotation angle before
the calculation. This leads to an x-axis independent
from the rotational speed of the data which allows the
aggregation of multiple time series (Figure 3b).

Finally, because the measurements were done in-
dependently they might still have a relative time shift.
By choosing one measurement as a reference, this
time shift can also be eliminated by a cross-correlation
analysis. Afterwards, multiple measurements or simu-
lations can be seamlessly aggregated and compared.

FIGURE 3. An example of an aggregation of the phase
current of multiple measurements over time (left) and over
the rotation angle (right). The top graph shows the average of
all measurements, the bottom graph shows a superposition
of all averaged measurements.

ITERATIVE DESIGN PROCESS
The visual analytics tool was developed iteratively
over five versions. Discussions by experts in both the
visualization domain and the electric motor domain led
to updates between each version (Figure 4). While we
considered novelty important, our focus was on provid-
ing an effective solution for our experts’ domain prob-
lem by leveraging proven visualization and interaction
techniques. This required a deep understanding of the
unique challenges, constraints, and user expectations
within the targeted domain to provide a solution that
is relevant to the real-world problem and tailored to its
requirements. The purpose of our iterative approach
was to refine the tool in response to expert feedback
and to align it to the specific requirements of the
electric motor domain. The feedback and new features
added between successive iterations are discussed in
this section.

Design Goals
In Section DOMAIN CHARACTERIZATION, we out-
lined three main tasks in the electric motor domain.
To enhance the effectiveness, clarity, and interpretabil-
ity of data visualization for these tasks, we prioritize
core design goals. Despite a broad range of design
objectives in existing literature ([23], [24], [25]), our
primary focus is on meeting the specific requirements
of domain experts.

� DG1 - Visual Clarity: When looking at or interacting
with a part of the visualization it should always
be clear what information is shown. Avoid re-using
names or colors for different parts of the visualiza-
tion. When needed, add tool-tips or descriptions to
aid understanding. For the electric motor domain,
make sure that measurement data and simulation
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FIGURE 4. A history of the added changes during development of the visualization. The scatterplot with semantic zoom
functionality and the general layout was added in version 1. Scatterplot lenses and the connected average measurement
calculation were added in version 2. Version 3 added the functionality to show the average in the lens. The color gradient
in the scatterplot and the range slider to hide entries based on their angle offset were added in version 4. Version 5 added the
split of the lens averages based on the angle offset of the electric motor, the ability to calculate average simulations and the
range slider to set the correct angle offset range.

data can be distinguished and compared (cf. T1).
� DG2 - High Level of Interactivity: This visualization

functions as a way to get knowledge from domain
experts before trying to train or adjust a simulation
model for further use. Before this human knowledge
is integrated, it can not be known which part or
aspect of the visualized data is most important for
the analysis. Therefore the visualization should have
a high level of interactive functionality to allow the
electric motor domain experts to separately analyze
measurement and simulation data from defective
and non-defective motors (cf. T2).

� DG3 - Flexible Exploration: Related to the last
point, it is important to provide a high level of
freedom with the implemented exploration function-
alities. Because the usage scenario is not known
in advance, assumptions about how the analysis
process will work should be avoided. Instead, the
separation of measurement data and simulation data
(cf. T1) and the separation of defective and non-
defective motor data (cf. T2) should be accessible
at any step of an analysis.

� DG4 - Scalability: The visualized data consists of

time series pairs created at different motor load
points. The number of the pairs is only dependent
on how many experiments were done and there are
no upper or lower limits for the number of pairs in a
data set. The visualization should be able to display
large numbers of time series pairs while still allowing
comparisons within and between motor load points
(cf. T3).

Initial Prototype

The data is arranged in a two-dimensional scatter plot
with rotational speed (in rotations per minute) on the
horizontal axis and load torque (in Newton-metres)
on the vertical axis. This encoding resembles engine
maps that are commonly used in engineering (DG1).
Each scatter plot entry represents a measurement and
a simulation at a particular load point. The scatterplot
can be transformed through semantic zooming (DG2).
Depending on the zoom level, the rectangle is trans-
formed over a small multiple to a detailed line chart
visualization of both time series (Figure 5).
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FIGURE 5. Two views of the scatterplot implementation in
the visualization. The top view shows the lowest zoom level
with all data visible and the entries colored according to the
color scale. The legend below the scatterplot describes the
distance between measurement and simulation within each
scatterplot entry. The bottom view shows a high zoom level
with only a few entries visible as line plots due to semantic
zooming.

Introduction of Lenses
The idea to average time series over scatterplot re-
gions was first introduced and implemented as a single
scatterplot lens, which could be moved and resized
(DG2). A scatterplot lens is a rectangular region of
the scatterplot which aggregates the measurement
time series contained within it to calculate a single
average measurement (DG4). The average distance
between measurement and simulation of entries within
the lens is shown in the top left corner of the lens
(DG1). The average measurement time series and all
measurement time series in the lens in superimposition
are also shown in a separate window in the bottom left
of the layout. (DG3).

Enhancement of Lenses
Next, the functionality to create and delete multiple
independent lenses was added to increase the flex-
ibility of their usage (DG2). Additionally, the average

measurement time series of entries in a lens could
now be shown directly in the lens to allow comparisons
directly in the scatterplot (DG3).

Comparison Functionality
Following this, the data alignment procedures de-
scribed in the chapter DATA PRE-PROCESSING were
implemented, leading to more exact averages and
visualizations (DG1). Another addition was the color
scale used to color the scatterplot entries. For each en-
try, the color scale value is calculated as the Euclidean
distance between the measurement and the simulation
(low -> white, high -> blue). This allows an overview on
how well the simulation model reflects the real-world
measurements under different load conditions (DG4).

To allow for separate analysis of time series from
non-defective motors and time series from defective
motors, a slider to hide or show scatter plot items
depending on the defect property (in this data set: the
angle offset ’offset ) was also added (DG3).

Feature Exploration
For data-driven defect detection, it is important to iden-
tify features which distinguish non-defective motors
from defective motors. Therefore, the average calcula-
tion within a lens was changed to distinguish between
low angle offsets, correct angle offsets and high angle
offsets. The average measurement time series is then
calculated for each group and three average time
series are displayed in the separate window and in the
lens (DG2). To allow the same analysis for simulation
time series, the functionality to aggregate simulations
in the scatterplot lenses was added. The displayed
average can then be switched between measurement
and simulation on demand (DG3, Figure 6). Another
related addition was a second range slider, used to
set the range of the angle offset which is considered
correct (DG2). This is necessary because the correct
range of the angle offset can be context-dependent,
making it hard to specify in advance.

In summary, the iterative design process has led to
the further development of our visualization tool, cul-
minating in a version that effectively meets the needs
of the electric motor sector. The following sections look
at the impact of these refinements on the usefulness
and applicability of our visualization tool.

USAGE SCENARIO
This section describes a possible usage scenario of
our visualization tool from the perspective of an electric
motor engineer. In particular, the usage scenario aims
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FIGURE 6. Two images showing the same scatterplot lens. In
the top image, the lens calculates the average measurement
of its enclosed entries. In the bottom image, the lens calcu-
lates the average simulation. The horizontal axis measures
the motor rotation in degrees, the vertical axis measures the
electrical current. This comparison helps find domain-invariant
features and identify differences between the domains. An
example of a difference in shape between domains is the
overshooting highlighted in the measurement (top), which is
not present in the simulation (bottom).

to identify similarities and differences between mea-
surement data and simulation data. This gives insights
into the quality of the simulation model.

The first analysis target the engineer is interested
in is how accurately the simulation model depicts the
real measured data (T1 - Simulation Validation). For
this, the engineer looks at the color of the scatterplot
entries. In this data set, the entries in the low torque
range consistently have a higher distance than entries
in the high torque range, which is represented by a
darker color (Figure 5, top).
To investigate the reason for this difference, the en-
gineer zooms into the lower torque range until the
individual time series become visible. From this, they
can see that the high distance stems from overshooting
in the measurement time series which is more pro-
nounced at low torque loads (Figure 8a).

FIGURE 7. A comparison of two large lenses spanning the
scatterplot. The legend below the scatterplot describes the
distance between measurement and simulation within each
scatterplot entry. In the top image, the scatterplot only shows
correct entries (entries with a correct rotor angle). In the
bottom image, the scatterplot only shows incorrect entries.
The lenses are sized such that they cover all incorrect entries
because correct entries and incorrect entries cover different
load point ranges. For this data set, the average distance
between measurement and simulation in the lenses (shown
in the top left corner) is very similar in both cases. This shows
that the simulation model works equally well for correct and
incorrect motor conditions.

A second interesting observation from the entry
color is a small number of entries with high distance
between measurement and simulation located at ap-
proximately 1500 rotations per minute. Again, the en-
gineer zooms closer to these entries and discovers an
anomalous current path in the time series (Figure 8b).
This discovery leads them to assume that the testing
bench had some issue at this specific rotational speed
(T3 - Process Improvement).

To further investigate the accuracy of the simulation
model, the engineer next wants to determine if the
angle offset has an influence on the simulations (T1
- Simulation Validation). Therefore, they create a
lens which covers the complete data set and focus
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FIGURE 8. An illustration of two anomalous regions of the scatterplot based on the color scale showing the distance between
measurement and simulation. The legend below the scatterplot describes the distance between measurement and simulation
within each scatterplot entry. Region (a) shows higher distances at low torque, region (b) shows higher distances at a specific
rotational speed close to 1500 rpm. Overlaid is a representative plot for each region. The horizontal axis of the plots measures
time, the vertical axis measures the electric current.

on the average distance between measurement and
simulation which is displayed in the top left corner of
the lens. By using the range slider, the engineer then
switches between showing only entries with a correct
angle offset and showing only entries with an incorrect
angle offset. For this data set, the average distance for
these two cases are very similar (Figure 7). Therefore,
the engineer can conclude that the simulation model
works consistently for correct and incorrect angle off-
sets.

Next, the engineer find possible time series char-
acteristics which point to a measurement or simulation
having a correct/incorrect angle offset (T2 - Visual
Feature Exploration). To this end, the engineer cre-
ates a lens and focuses on the average measurement
time series inside the lens. At a specific scatterplot
region in this data set, they notices that the average
time series for high angle offset entries has a larger
overshooting than for correct offset entries (Figure 6,
top), making this overshooting shape a input candidate
for data-driven defect detection methods. To be useful
for training such models, the shape must be domain-
invariant, i.e., appear in both measurement and sim-
ulation. To verify this, the engineer switches the lens
view to show the average simulation. In the average
simulation, the overshooting does not appear in any
of the three time series (Figure 6, bottom). Therefore,
the overshooting shape in the measured phase current

is not domain-invariant and can not help with defect
detection methods. However, the remaining parts of
the time series are the same in both measurement
and simulation, making them good candidates for such
methods.

Think-Aloud Study with Electric
Motor Experts

To assess the effectiveness of our visualization, we
conducted a think-aloud study involving three electric
motor experts, two of whom are co-authors. They
possess specialized knowledge in the domain. The
study utilized the described dataset collected from end-
of-line testing.

Procedure
Participants began by watching an introductory video
detailing the functionalities of the tool. Following this,
they undertook a series of open-ended tasks designed
to estimate their perception of the tool’s utility. Partici-
pants were asked to utilize all provided visual features
and articulate the information they observed. The tasks
were:

1) Explore the scatterplot visualization and explain
what you see in the scatterplot.

2) Reason why the distance between measurement
and simulation is larger for smaller torque values.

April 2024 9

This article has been accepted for publication in IEEE Computer Graphics and Applications. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/MCG.2024.3392969

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Technische Universitaet Graz. Downloaded on May 27,2024 at 06:20:07 UTC from IEEE Xplore.  Restrictions apply. 



Electric Motor Data Exploration

3) Change the range slider to only show entries with
an incorrect angle offset. Explain what you see
now in the scatterplot.

4) Create two new Lenses. Move one Lens to any
area with high torque and move one Lens to any
area with low torque. Right-click the Lenses to
show the average time series inside the Lenses.
Explain what you see in each Lens.

5) When comparing the two lenses, what do you
notice? Explain what you see.

6) When comparing the time series within a lens,
reason what (if any) influence does the distance
between measurement and simulation have?

7) When comparing the time series within a lens,
reason what (if any) influence does the rotational
speed and the torque (i.e., the position of the Lens
in the scatterplot) have?

While solving the tasks, the participants were encour-
aged to talk about their thought process and to mention
any other observations not explicitly mentioned in the
tasks. After completing all tasks, the participants were
asked to fill out a positive System Usability Scale
(SUS) [26], [27] using a 7-point Likert scale (1 =
strongly disagree, 7 = strongly agree)[28]. The SUS
measures the overall usability of the visualization tool.

Results
The scatterplot arrangement and the color scale were
well understood by all participants during the initial
exploration. One participant mentioned that "the dis-
tance color scale can be used to identify where there
are differences between measurement and simulation
(P1)".

To answer the next question, the participants
zoomed into the low torque area of the scatterplot
to see the individual time series. They identified
that "through semantic zooming it can be seen that
overshooting and undershooting of measurements in
the low torque area leads to higher measurement-
simulation distance (P1, P2)". One participant noted
that this overshooting also happens in some high
torque measurements but because the absolute am-
plitude is larger at higher torque and the absolute
value of the overshooting is the same, the resulting
difference between measurement and simulation is
not as large. One participant suggested an indicator
of which percentage of the whole data set is visible
when some entries are hidden via the range slider. It
was also noted by one participant that "entries with a
low angle offset have on average the lowest distance
between measurement and simulation (P3)".

Next, the participants created the lenses and exper-

imented with the averages within the lens. They noted
that the overall average behaved as expected when
moving the lens, with an increase in the covered rota-
tion angle for higher rotational speed and an increase
in the current amplitude for higher torque values. It was
also noted that the overshooting in the measurement
happens most prominently in entries with a high angle
offset. Overall, the functionality of the lenses and the
information they convey was understood quickly by the
participants. The lenses were described as a novel
and useful addition to the visualization ("Lenses and
Semantic zooming are useful and have the potential
to show even more information (P1)").

All participants agreed that the distance between
measurement and simulation does not influence the
average time series within a lens. Instead, one par-
ticipant described it as "two separate layers of infor-
mation". These two layers could describe the first two
goals of the visualization, with the distance between
measurement and simulation being useful for Simu-
lation Validation and the average time series being
useful for Feature Exploration. When comparing the
lens averages at different positions in the scatterplot,
only the previously mentioned increases in covered ro-
tation angle and amplitude were noticed. The averages
were seen as largely consistent across the scatterplot
which suggests that the end-of-line test setup and the
simulation model work equally for a variety of motor
load conditions.

The results of the SUS can be seen in Table 2. The
low average scores for question 2 (’I found this Tool to
be simple’) and question 4 (’I think that I could use this
Tool without the support of an expert’) suggest that
the visualization might be challenging to understand
for first-time users, requiring a familiarization step. The
relatively small quantity of the collected data prevented
us from drawing valid statistical conclusion. This study
thus needs a follow-up involving more participants.

DISCUSSION
The visualization tool described in this paper can be
used to explore time series data created from end-of-
line testing for electric motors. It uses semantic zoom-
ing and scatterplot lenses to allow an analysis of both
real-world and simulation data as well as comparisons
between these domains. In the following, we discuss
how the visualization achieves the goals laid out at the
beginning:
� T1 - Simulation Validation: How well the approx-

imation of real-word data by the simulation model
works can be seen through the color scale rep-
resenting the distance between measurement and
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TABLE 2. Results of the system usability scale (SUS).
Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10 Total

Participant 1 7.5 7.5 7.5 2.5 10 10 10 7.5 10 10 82.5
Participant 2 7.5 2.5 7.5 7.5 7.5 10 10 7.5 5 10 75
Participant 3 10 10 10 7.5 7.5 7.5 7.5 7.5 7.5 7.5 82.5
Average 8.33 6.66 8.33 5.83 8.33 9.17 9.17 7.5 7.5 9.17 80

simulation in each scatterplot entry. While the color
scale only shows the correctness of the simulation in
each entry individually, an overview of the simulation
model performance can be gained by aggregating
the color of all entries. Many bright entries signify
a better approximation of the real-world data while
many dark entries signify a worse approximation.
Additionally, the distance between measurement and
simulation can also help find problems at the test
bench if the simulation data stays similar across
a region of the scatterplot while some measure-
ments show unusual patterns. These methods can
be useful when there is no precise match between
measurement and simulation in the torque-rotational
speed parameter space. In such cases, comparing
data from both domains within a specific range can
be valuable. Additional functionalities like statisti-
cal similarity measures across a limited parameter
space could enhance the current implementation.

� T2 - Visual Feature Exploration: The most effective
way to find time series characteristics which iden-
tify defective and non-defective motors is by using
scatterplot lenses. Scatterplot lenses help explain
the differences between them in terms of time series
patterns. The average time series within each lens is
divided between non-defective and defective motors,
therefore it is possible to see which features appear
only in one of the time series. Such features can
be seen as input candidates for data-driven defect
detection methods. By switching the average time
series between measurements and simulation it can
also be seen if these features are domain-invariant.

� T3 - Process Improvement: To find load conditions
where there is no clear distinction between defective
and non-defective motors, the most useful function-
ality is the scatterplot lens. Because the average
time series are divided between defective and non-
defective motors, it is easy to see when the time
series are very similar. By moving a lens to differ-
ent regions of the scatterplot, load conditions with
no clear distinctions between correct and incorrect
motors can be found.

The analysis of the functionality of this visualization
and the results of the think-aloud study show that the
visualization achieves the defined goals.

While originally developed for engineers, our tool

facilitates the dynamic exploration and analysis of
time series data through intuitive visualizations and
interactive features. Beyond the detection of defects in
electric motors, its applicability extends to various fields
of engineering and beyond. It can be easily adapted
to domains requiring pattern recognition or anomaly
detection such as financial analysis, manufacturing
quality control, or condition monitoring [29].

CONCLUSION
We developed a visual analysis tool tailored for elec-
trical motor engineering, specifically to identify key
requirements in end-of-line testing. It integrates mea-
surements of phase currents from motor tests with
simulated data from a motor model, focusing on the
rotor angle offset (’offset ) which is a motor parameter
that can influence the performance. The tool effectively
assists in comparisons between measurements and
simulations at different load conditions to determine
if the domain shift is constant, as required for the
approach described by Marth et al. [1].

The tool employs scatterplots based on motor pa-
rameters like rotational speed and torque, enabling
comparison between real and simulated data with
semantic zooming and detailed line graphs. Scatterplot
lenses aggregate multiple time series, aiding accurate
simulation model evaluation, particularly in ’offset rela-
tionships. This approach enhances end-of-line testing
and data-driven defect detection, streamlining data
generation processes for engineers.

The performed expert study laid the groundwork by
establishing the validity of the proposed visual design.
Our future work will include comparative evaluations
to further improve the research results. This approach
will not only address concerns regarding the generaliz-
ability of findings but also offer additional insights into
enhancing usability. Additionally, we aim to automate
end-of-line test documentation for customers and de-
velopers, integrating annotation features to construct
a knowledge base from extensive test and simulation
data. Our vision is to develop a system that suggests
significant data segments to experts, thereby enhanc-
ing the analysis workflow for users of varying expertise
levels.
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